skip to main content


Search for: All records

Creators/Authors contains: "Meiksin, Avery"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present the Sherwood–Relics simulations, a new suite of large cosmological hydrodynamical simulations aimed at modelling the intergalactic medium (IGM) during and after the cosmic reionization of hydrogen. The suite consists of over 200 simulations that cover a wide range of astrophysical and cosmological parameters. It also includes simulations that use a new lightweight hybrid scheme for treating radiative transfer effects. This scheme follows the spatial variations in the ionizing radiation field, as well as the associated fluctuations in IGM temperature and pressure smoothing. It is computationally much cheaper than full radiation hydrodynamics simulations, and circumvents the difficult task of calibrating a galaxy formation model to observational constraints on cosmic reionization. Using this hybrid technique, we study the spatial fluctuations in IGM properties that are seeded by patchy cosmic reionization. We investigate the relevant physical processes and assess their impact on the z > 4 Lyman-α forest. Our main findings are: (i) consistent with previous studies patchy reionization causes large-scale temperature fluctuations that persist well after the end of reionization, (ii) these increase the Lyman-α forest flux power spectrum on large scales, and (iii) result in a spatially varying pressure smoothing that correlates well with the local reionization redshift. (iv) Structures evaporated or puffed up by photoheating cause notable features in the Lyman-α forest, such as flat-bottom or double-dip absorption profiles.

     
    more » « less
  2. Abstract Observations at intermediate redshifts reveal the presence of numerous compact, weak Mg ii absorbers with near to supersolar metallicities, often surrounded by extended regions that produce C iv and/or O vi absorption, in the circumgalactic medium at large impact parameters from luminous galaxies. Their origin and nature remain unclear. We hypothesize that undetected satellite dwarf galaxies are responsible for producing some of these weak Mg ii absorbers. We test our hypothesis using gas dynamical simulations of galactic outflows from a dwarf galaxy with a halo mass of 5 × 10 9 M ⊙ , as might be falling into a larger L * halo at z = 2. We find that thin, filamentary, weak Mg ii absorbers (≲100 pc) are produced in two stages: (1) when shocked core-collapse supernova (SN II)–enriched gas descending in a galactic fountain gets shock compressed by upward flows driven by subsequent SN II and cools (phase 1) and, later, (2) during an outflow driven by Type Ia supernovae that shocks and sweeps up pervasive SN II–enriched gas, which then cools (phase 2). The Mg ii absorbers in our simulations are continuously generated by shocks and cooling with moderate metallicity ∼0.1–0.2 Z ⊙ but low column density <10 12 cm −2 . They are also surrounded by larger (0.5–1 kpc) C iv absorbers that seem to survive longer. Larger-scale (>1 kpc) C iv and O vi clouds are also produced in both expanding and shocked SN II–enriched gas. Observable ion distributions from our models appear well converged at our standard resolution (12.8 pc). Our simulation highlights the possibility of dwarf galactic outflows producing highly enriched multiphase gas. 
    more » « less